Semi-supervised methods of text processing, and an application to medical concept extraction

> Yacine Jernite Text-as-Data series September 17. 2015

What do we want from text?

- 1. Extract information
- 2. Link to other knowledge sources
- 3. Use knowledge (Wikipedia, UpToDate,...)

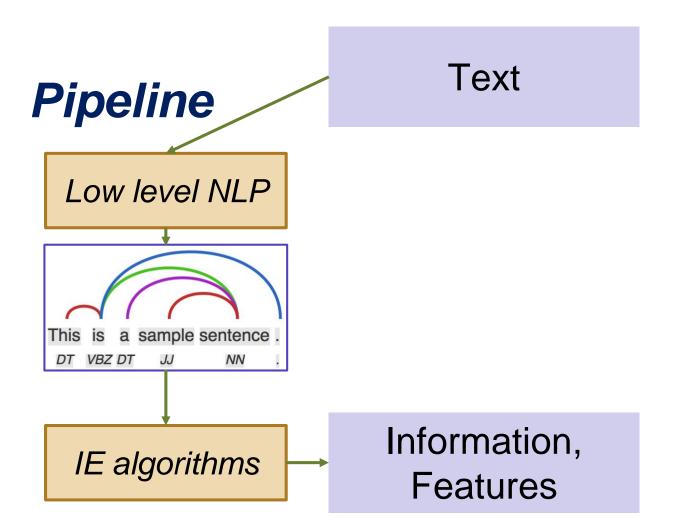
How do we answer those questions?

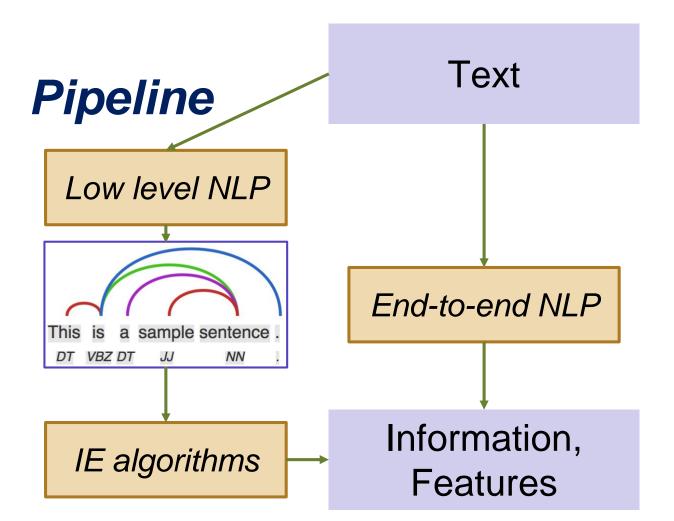
- 1. What do people talk about on social media, and how? (Sentiment analysis)
- 2. What actions are described in a news article? (Semantic parsing)
- 3. In a medical setting: what symptoms does a patient exhibit?

Pipeline

Information, Features

Text





Machine learning approach

- 1. Specify task
- 2. Specify training algorithm
- 3. Get data
- 4. Train

Machine learning approach

- 1. Specify task
- 2. Specify training algorithm
- 3. Get data
- 4. Train

So much text, so few labels

- 5M English Wikipedia articles (3G words)
- 54M Reddit comments
- 1G Words in Gigaword dataset (newswire text)
- 5-grams from 1T words

So much text, so few labels

- 1M words in Penn TreeBank (parsing)
- Machine translation: highly language (and domain) dependent
- A few thousand to few hundred thousand sentence...
- And so many other custom tasks

Presentation outline

- 1. Literature review on semisupervised paradigms
 - a. Label induction
 - b. Feature learning
- 2. Current work: Semi-Supervised Medical Entity Linking

Overview

Label induction

- 1. Labeling data is costly
- 2. Automatically obtain approximate labeling on larger dataset
- 3. Train using pseudolabels

Overview

Feature learning

- 1. Feature quality affects accuracy
- 2. Learn features using other sources

3. Train with features on small labeled dataset

So much text, so few labels

- Label induction
- Feature learning
- Domain adaptation
- Multi-view learning

Overview

Labels

- Fine Grained Entity Recognition
 - Ling and Weld, 2012
- Distant Supervision for RE
 with an incomplete KB
 - Min et al., 2013
- Co-Training for DA
 - Chen et al. 2011
- Semi-Supervised FSP for Unknown Predicates
 - Das and Smith, 2011

- Method type: <u>Automatic labeling</u>
- *Task*: Identify entities in text, and tag them with one of 112 types
- Labeled data: Hand-labelled news reports
- Auxiliary data: Wikipedia, Freebase

Freebase

Don Quixote en

mid: /m/0297f notable type: /book/book on the web: W wikipedia.org 🕤

Don Quixote, fully titled The Ingenious Gentleman Don Quixote of La Mancha, is a Spanish novel by Miguel de Cervantes Saavedra. It follows the adventures of Alonso Quixano, an hidalgo who reads so many chivalric novels that he loses his sanity and decides to set out to revive chivalry, undo wrongs, and bring justice to the world, under the name Don Quixote. He recruits a simple farmer, Sancho Parza, as his squire, who often employs a unique, earthly wit in dealing with Don Quixote's rhetorical orations on antiquated knighthood. Don Quixote, in the first part of the book, does not see the world for what it is, and prefers to imagine that he is living out a knightly story. The story implements various themes, such as intertextuality, realism, metatheatre, and literary representation. Published in two volumes, in 1605 and 1615, Don Quixote is considered the most influential work of literature from the Spanish Golden Age and the entire Spanish literary canon. [-]

Created by book bot on 4/12/2010

Properties	l18n	Keys	Links		O *
View and edit specifi	▼ Types: Common				
Common / commo	n			Freebase Commons	Торіс
Topic /common/top	ic	x	Books		
Also known as /o	ommon/topic/alias				Book Literature Subject
Also known as					Ellerature Subject
Don Quijote de la Man	cha				
El ingenioso hidalgo D	on Ouiiote de la Mancha				

 Automatically label entity spans in Wikipedia text

Don Quixote

• • •

Meaning

<u>Harold Bloom</u> says that *Don Quixote* is the writing of radical <u>nihilism</u> and anarchy,...

1. Automatically label Wikipedia text

- Spans are obtained from hyperlinks
- Types are obtained from Freebase

Don Quixote

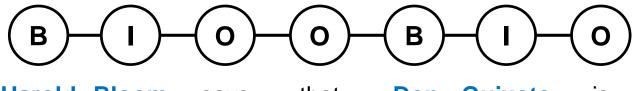
<u>Meaning</u>

Harold Bloom says that Don Quixote is the writing of radical <u>nihilism</u> and anarchy,...

Harold Bloom:	Ni
Topic, Academic, Person, Author,	<i>Ni</i> Тс
Award winner, Influence node	su

Nihilism: Topic, Field of study, Literature subject, <u>Religion</u>

1. Train CRF and perceptron on pseudo-labeled data



- Compares to
 - Stanford NER: 4 most common classes
 - Ratinov et al. Named Entity Linking
- Results:

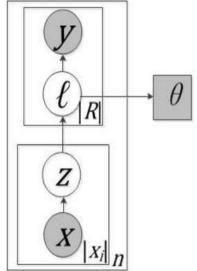
Measure	Strict	Loose Macro	Loose Micro
NEL	0.220	0.327	0.381
Stanford (CoNLL)	0.425	0.585	0.548
FIGER	0.471	0.617	0.597
FIGER (GOLD)	0.532	0.699	0.693

- Method type: <u>Automatic labeling</u>, <u>Label</u> <u>inference</u>
- *Task*: Relation extraction
- Labeled data: TAC 2011 KBP dataset
- Auxiliary data: Wikipedia infoboxes, Freebase

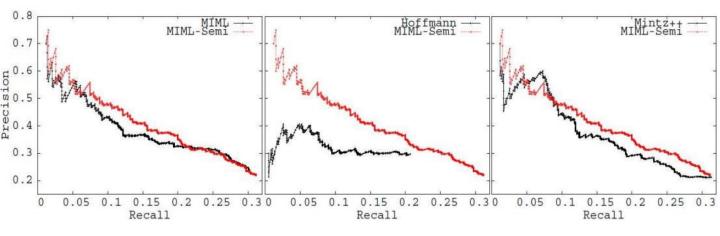
- Entity pairs extracted from Wikipedia infoboxes
- Labeled with FreeBase relations: origin

• Latent variable algorithm to learn from positive-only labels

- X: entity pair mention
- Z: mention level label
- I: bag level label
- Y: KB entity pair label
- **0**: Number of positive labels

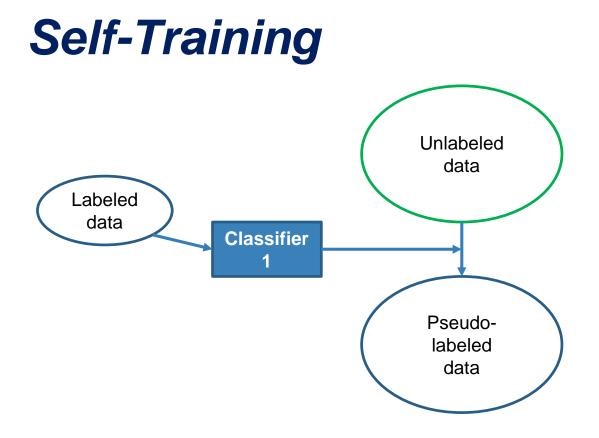


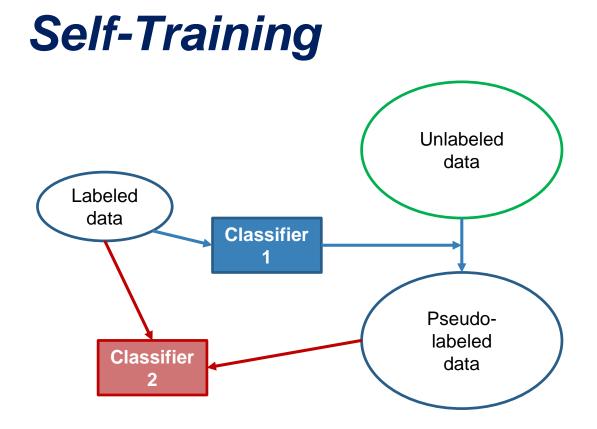
• Learns with EM, compares to (y = I)



Co-Training for Domain Adaptation

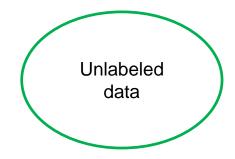
- Method type: <u>Automatic labeling</u>, <u>Domain</u> adaptation
- Task: Text classification review polarity
- Labeled data: Amazon reviews for books, DVD, electronics, kitchen
- Auxiliary data: Cross-domain training

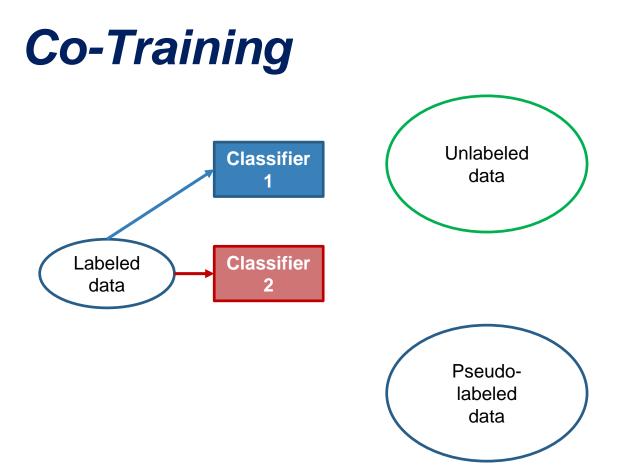


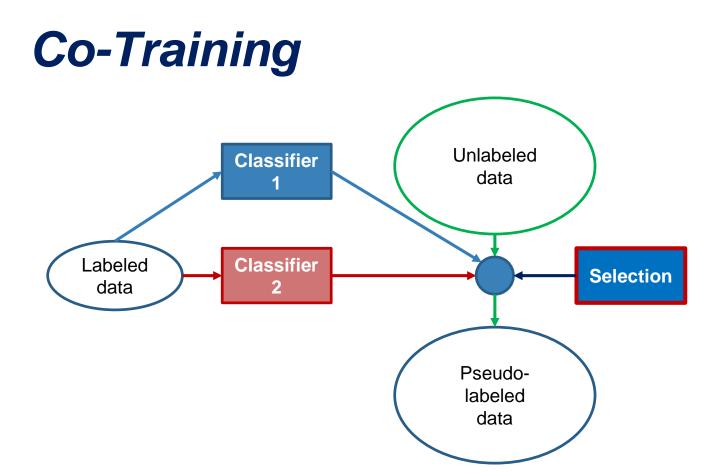


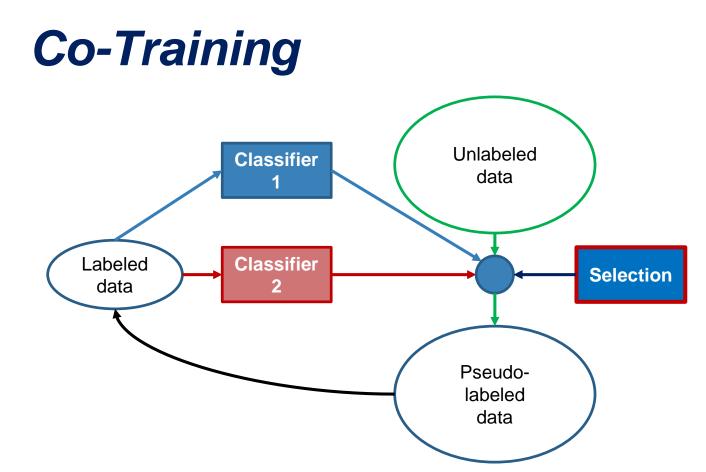
Self-Training

- Algorithm
 - Train System-1 on labeled data
 - Label some data with System-1
 - Train System-2 on combined data
- Not much improvement
 - Less than 1% parsing accuracy
 - Somewhat better "portability"









Co-Training

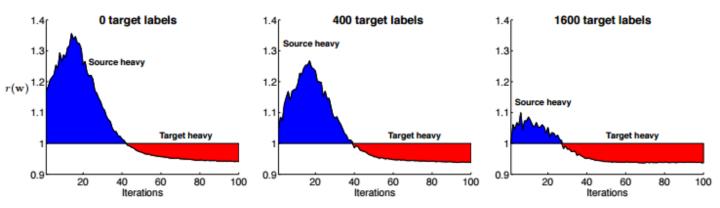
Algorithm

- Train System-1 and System-2 on labeled data with disjoint feature sets
- Add data which is confidently labeled by exactly one system
- Re-train, iterate
- Theoretical guarantees for "independent" feature sets

Co-Training for Domain Adaptation

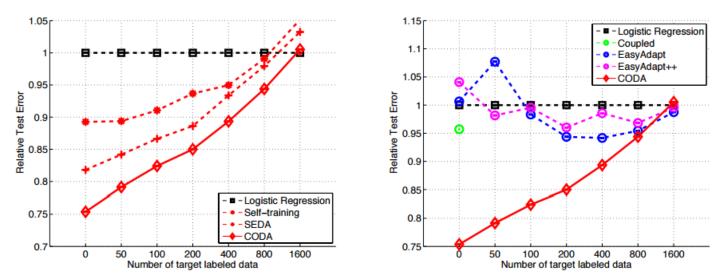
• L1 regularization: starts using more target-domain features

Ratio of used features (source/target)



Co-Training for Domain Adaptation

 Best improvement adding a limited number of examples



- *Method type*: <u>Label pre-selection</u>
- Task: Frame-semantic parsing
- Labeled data: SemEval 2007
- Auxiliary data: Gigaword corpus, FrameNet

Ted really tried to read Infinite Jest, but was discouraged by the size of the book.

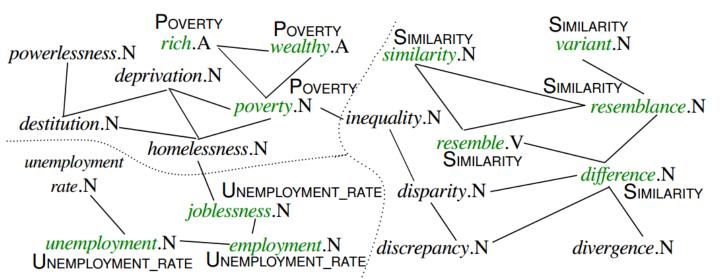
Attempt

Definition:

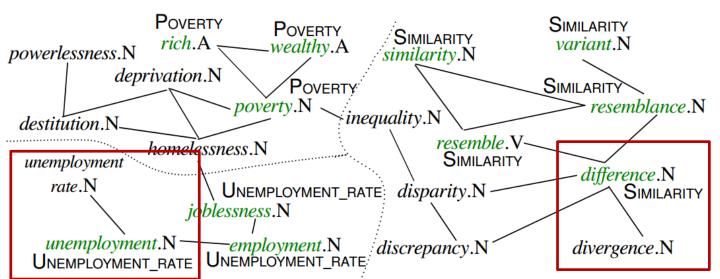
An Agent attempts to achieve a Goal. The Outcome may also be mentioned explicitly. John ATTEMPTED to climb Mt. Everest.

It was another failed ATTEMPT to climb Mt. Everest.

Extracts possible frame targets from unlabeled data



Extracts possible frame targets from unlabeled data



- Graph construction
 - Distance from dependency parsed text
 - About 60,000 targets (about 10,000 in FrameNet)
 - Convex quadratic optimization problem

Learned neighbor frame
 distribution

t = discrepancy.N		t = contribut	t = print.V		
f	$q_t^*(f)$	f	$q_t^*(f)$	f	$q_t^*(f)$
*SIMILARITY	0.076	*GIVING	0.167	*TEXT_CREATI	ом 0.08 1
NATURAL_FEATURE	s 0.066	MONEY	0.046	SENDING	0.054
PREVARICATION	0.012	COMMITMENT	0.046	DISPERSAL	0.054
QUARRELING	0.007	ASSISTANCE	0.040	READING	0.042
DUPLICATION	0.007	EARNINGS_AND_LOS	ses 0.024	STATEMENT	0.028

```
    Parsing results
```

UNKNOWN TARGETS				ALL TARGETS								
Model	Exact Match			Partial Match		Exact Match		Partial Match				
WIOUEI	P	R	F_1	P	R	F_1	P	R	F_1	P	R	F_1
SEMAFOR	19.59	16.48	17.90	33.03	27.80	30.19	66.15	61.64	63.82	70.68	65.86	68.18
Self-training	15.44	13.00	14.11	29.08	24.47	26.58	65.78	61.30	63.46	70.39	65.59	67.90
LinGraph	29.74	24.88	27.09	44.08	36.88	40.16	66.43	61.89	64.08	70.97	66.13	68.46
FullGraph	35.27*	28.84*	31.74*	48.81*	39.91 *	43.92 *	66.59*	62.01 *	64.22*	71.11*	66.22*	68.58 *

Overview

Features

- Prototype-Driven Learning for Sequence Models
 - Haghighi and Klein, 2006
- DA with Structural Correspondence Learning
 - Blitzer et al., 2006
- NLP (almost) from scratch
 - Collobert et al., 2011
- On Using Monolingual Corpora in NMT
 - Gulcehere et al., 2015

- Method type: <u>Feature learning</u>
- Task: POS tagging, Classified ads segmentation
- Labeled data: PTB/CTB, Classifieds
- Auxiliary data: Prototypes

• Example prototypes:

Label	Prototypes
ROOMATES	roommate respectful drama
RESTRICTIONS	pets smoking dog
UTILITIES	utilities pays electricity
AVAILABLE	immediately begin cheaper
SIZE	2 br sq
PHOTOS	pictures image link
RENT	<pre>\$ month *number*15*1</pre>
CONTACT	*phone* call *time*
FEATURES	kitchen laundry parking
NEIGHBORHOOD	close near shopping
ADDRESS	address carlmont *ordinal*5
BOUNDARY	;.!

Label	Prototype	Label	Prototype
NN	% company year	NNS	years shares companies
JJ	new other last	VBG	including being according
MD	will would could	-LRB-	-LRBLCB-
VBP	are 're 've	DT	the a The
RB	n't also not	WP\$	whose
-RRB-	-RRBRCB-	FW	bono del kanji
WRB	when how where	RP	Up ON
IN	of in for	VBD	said was had
SYM	сbf	\$	\$ US\$ C\$
CD	million billion two	#	#
TO	to To na	:	-:;
VBN	been based compared	NNPS	Philippines Angels Rights
RBR	Earlier duller	"	"' non-"
VBZ	is has says	VB	be take provide
JJS	least largest biggest	RBS	Worst
NNP	Mr. U.S. Corp.	,	,
POS	'S	CC	and or But
PRP\$	its their his	JJR	smaller greater larger
PDT	Quite	WP	who what What
WDT	which Whatever whatever		. ? !
EX	There	PRP	it he they
"	22	UH	Oh Well Yeah

- Gives prototypes of tag-token pairs
- Compute a similarity measure on tokens
- Adds similarity to the prototypes as a feature

• Results:

	Num Tokens						
Setting	48K	193K]				
BASE	42.2	41.3]				
PROTO	61.9	68.8		Classifieds seg	omentation		
PROTO+SIM	79.1	80.5					
TROTOTOIM	//.1	00.5	Settir	າຍ	Accuracy		
DOS togging		-	500000		`		
POS tagging			BASE		46.4		
			PROTO		53.7		
			PROTO+SIM		71.5		
		PROTO+SIM+BOUND		74.1			

- Method type: <u>Feature learning</u>, <u>Multi-view</u> <u>learning</u>, <u>Domain adaptation</u>
- *Task* : POS tagging
- Labeled data: MEDLINE (target domain)
- Auxiliary data: WSJ (source domain)

• Example: pivot features *required*, *from*, *for*

(a) An ambiguous instance

JJ vs. NN						
with	normal	signal	transduction			

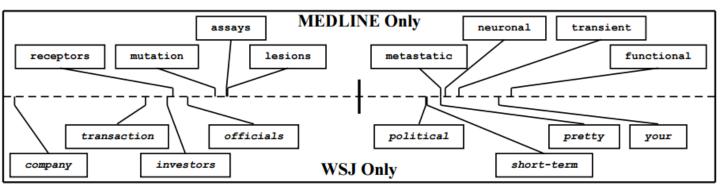
(**b**) MEDLINE occurrences of signal, together with pivot features

the **signal** *required* to stimulatory **signal** *from* essential **signal** *for* (c) Corresponding WSJ words, together with pivot features

of **investment** *required* of **buyouts** *from* buyers to **jail** *for* violating

- Defines a set of pivot features, present in both source and target
- Sets up a set of mini-tasks: "predict the presence of pivot feature f"
- Runs SVD on the learned weights W_f

• Projection on first singular vector:



• Results:

...,

Results for 561 MEDLINE Test Sentences 90 85 Accuracy supervised 80 semi-ASO SCL 75 100 500 5k 40k 1k Number of WSJ Training Sentences

(b) Accuracy on 561-sentence test set

	Words			
Model	All Unknown			
Ratnaparkhi (1996)	87.2	65.2		
supervised	87.9	68.4		
semi-ASO	88.4	70.9		
SCL	88.9	72.0		

(c) Statistical Significance (McNemar's) for all words

Null Hypothesis	p-value
semi-ASO vs. super	0.0015
SCL vs. super	2.1×10^{-12}
SCL vs. semi-ASO	0.0003

- Method type: <u>Feature learning</u>, <u>Multi-view</u>
 <u>learning</u>
- Task : POS, chunking, NER, SRL
- Labeled data: PTB, CoNLL
- Auxiliary data: 852M words from Wikipedia + Reuters

 Neural network architecture

Input Window			/	word (of interest
Text	cat	sat	on	the	mat
Feature 1	w_1^1	w_2^1			w_N^1
Feature K	w_1^K	w_2^K			w_N^K
Lookup Table					
					∏ ↑
$LT_{W^1} \longrightarrow$					
		-		-	L d
$LT_{W^K} \longrightarrow$					
	_	(onca	t	
Linear					- ×
$M^1 \times \odot \longrightarrow$	ITT				
			n_{hu}^1		⇒
HardTanh					-
_)		_
Linear					¥
$M^2 \times 6 \longrightarrow$		IIII			
		+n_h^2	u = #1	ags	

Figure 1: Window approach network.

• First approach: supervised training of neural networks for tasks

Approach	POS	Chunking	NER	SRL
	(PWA)	(F1)	(F1)	(F1)
Benchmark Systems	97.24	94.29	89.31	77.92
NN+WLL	96.31	89.13	79.53	55.40
NN+SLL	96.37	90.33	81.47	70.99

• Second approach: initialize with word representations from LM

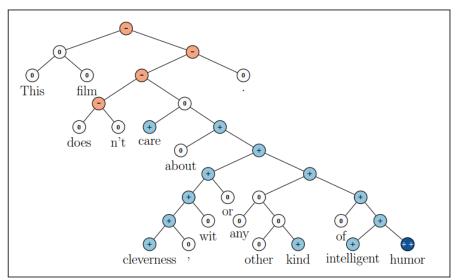
Approach	POS	CHUNK	NER	SRL
	(PWA)	(F1)	(F1)	(F1)
Benchmark Systems	97.24	94.29	89.31	77.92
NN+WLL	96.31	89.13	79.53	55.40
NN+SLL	96.37	90.33	81.47	70.99
NN+WLL+LM1	97.05	91.91	85.68	58.18
NN+SLL+LM1	97.10	93.65	87.58	73.84
NN+WLL+LM2	97.14	92.04	86.96	58.34
NN+SLL+LM2	97.20	93.63	88.67	74.15

• Finally: joint training

Approach	POS	CHUNK	NER	SRL		
	(PWA)	(F1)	(F1)	(F1)		
Benchmark Systems	97.24	94.29	89.31	77.92		
	Window Approach					
NN+SLL+LM2	97.20	93.63	88.67	-		
NN+SLL+LM2+MTL	97.22	94.10	88.62	_		
	Sentence Approach					
NN+SLL+LM2	97.12	93.37	88.78	74.15		
NN+SLL+LM2+MTL	97.22	93.75	88.27	74.29		

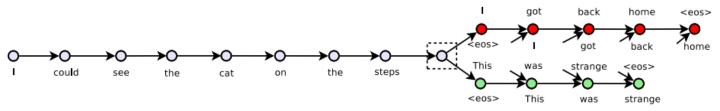
Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank

 Sentiment analysis using word embeddings and syntactic parses



Skip-Thoughts Vectors (Kiros et al., NIPS 2015)

Encodes sentences directly

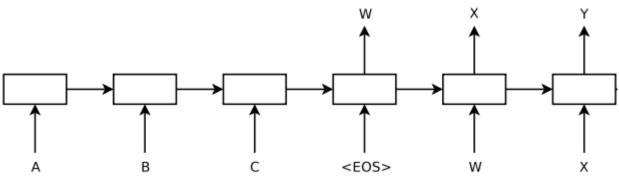


Improves sentence-level tasks

- Classification
- Paraphrase
- Image-sentence ranking

- Method type: <u>Feature learning</u>, <u>Target</u> <u>distribution</u>
- Task : Machine Translation
- Labeled data: Aligned text
- Auxiliary data: Monolingual corpora

- Neural Machine Translation as sequence to squence modeling
- RNN ancoder and decoder:



- Train Neural Machine Translation system
- Train target language model: RNN
- Shallow fusion: beam search on combined scores
- Deep fusion: add language model hidden state as input to decoder (+controller)

	Test Set				
	tst2011	tst2012	tst2013	Test 2014	
Previous Best (Single)	18.77	18.62	18.88	-	
Previous Best (Combination)	18.83	18.93	18.70	-	
NMT	18.40	18.77	19.86	18.64	
NMT+LM (Shallow)	18.48	18.80	19.87	18.66	
NMT+LM (Deep)	20.17	20.23	21.34	20.56	
Turkish					

	SMS/	CHAT	CTS						
	Dev	Test	Dev	Test					
PB	15.5	14.73	21.94	21.68		De-En		Cs-En	
+ CSLM	16.02	15.25	23.05	22.79		Dev	Test	Dev	Test
HPB	15.33	14.71	21.45	21.43	NMT Baseline	25.51	23.61	21.47	21.89
+ CSLM	15.93	15.8	22.61	22.17	Shallow Fusion	25.53	23.69	21.95	22.18
NMT	17.32	17.36	23.4	23.59	Deep Fusion	25.88	24.00	22.49	22.36
Shallow	16.59	16.42	22.7	22.83					
Deep	17.58	17.64	23.78	23.5					
	С	hinese]				

Semi-Supervised Learning for Entity Linkage using Variational Inference

Yacine Jernite, Alexander Rush and David Sontag

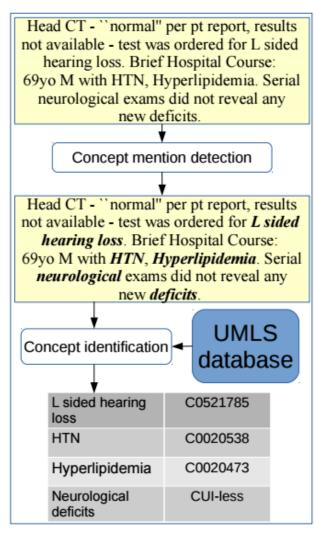
Semi-Supervised Learning for Entity Linkage using Variational Inference

- Method type: <u>Feature learning</u>, <u>Label</u> <u>inference</u>
- Task: Medical concept extraction
- Labeled data: Semeval 2015 (annotated medical notes)
- Auxiliary data: MIMIC-II (medical text), UMLS

Task description

• We have:

- Medical text from the MIMIC database
- Medical knowledge base UMLS with concept descriptions
- We want to identify concepts in the text and link them to UMLS



UMLS samples

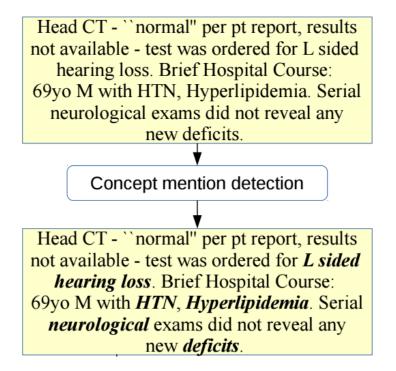
• Ambiguous, incomplete

C0027627	C0002895	C0342788		
neoplasm metastasis	anemia, sickle cell	renal carnitine transport defect		
Neoplastic Process	Disease or Syndrome	Disease or Syndrome		
metastases, neoplasm	transient abnormal myelopoiesis	carnitine uptake defect		
metastasis	sickle cell anemia	systemic carnitine deficiency		
secondaries	hemoglobin ss	scd		
metastases	disease sickle-cell	primary carnitine defncy		
tumor cell migration	scd	cud		

UMLS samples

• Ambiguous, incomplete

C0027627	C0002895		C0342788		
neoplasm metastasis	anemia, sick	e cell	renal carnitine transport defect		
Neoplastic Process	Disease or Syr	ndrome	Disease or Syndrome		
metastases, neoplasm	transient abnormal 1	nyelopoiesis	carnitine uptake defect		
metastasis	sickle cell anemia		systemic carnitine deficiency		
secondaries	hemoglobin ss		scd		
metastases	disease sickle-cell		primary carnitine defncy		
tumor cell migration	scd		cud		

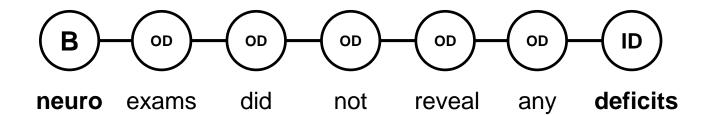


• B, I, O – ID, OD tagging with CRF

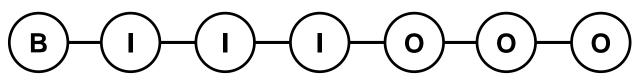
ordered for L sided hearing loss

Β

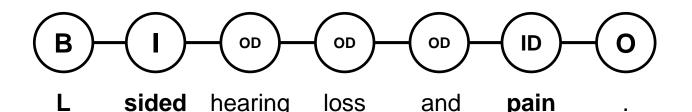
Ο



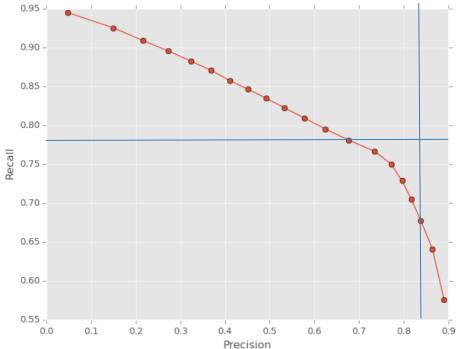
Duplicating incompatible examples



L sided hearing loss and pain

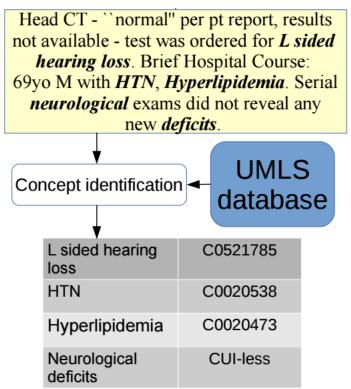


- Run inference on unlabeled and test set
- Approximate marginal probability
- Threshold



• Other approaches:

- <u>ezDI: A Supervised NLP System for Clinical</u> <u>Narrative Analysis</u>, Pathak et al., 2015
- BIO for continuous, SVM to join
- <u>ULisboa: Recognition and Normalization of</u> <u>Medical Concepts</u>, Leal et al., 2015
- BIOENS tagging scheme, Brown clusters, domain lexicons



• Pathak et al.:

• Simple lookup

Edit distance

• Semi-automated modified descriptions

CUI	Text	P1	P2	P3
C001 3132	Dribbling from mouth	Dribbling	from	mouth
C001 4591	Bleeding from nose	Bleeding	from	nose
C002 9163	Hemorr- hage from mouth	Hemo- rrhage	from	mouth
C039 2685	Chest pain at rest	Chest pain	at	rest
C026 9678	Fatigue during pregnancy	Fatigue	during	pregn ancy

- Leal et al.
 - Abbreviation dictionary
 - UMLS lookup
 - Similarity: Lucene, n-gram and edit distane
 - Lowest Information Content (specificity, using UMLS tree structure)

• <u>A Generative Entity-Mention Model for</u> <u>Linking Entities with KB</u> (Han and Sun, ACL 2011)

•
$$p(m,e) = p(s,c,e) = p(e)p(s|e)p(c|e)$$

- *p*(*s*|*e*): translation model from main description
- p(c|e): unigram language model

• Our model:

•
$$p(m,e) = p(m|e)p(e)$$

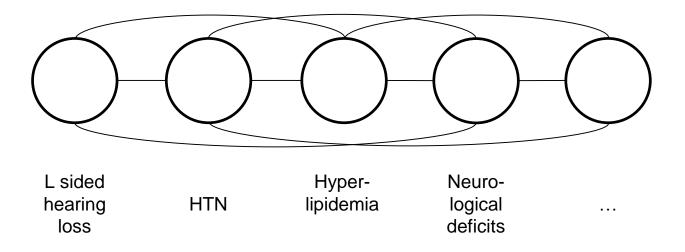
- p(m|e): multinomial with automatically curated support
- *p*(*e*): joint distribution on all entities in the document

• Our model:

•
$$p(m,e) = p(m|e)p(e)$$

- p(m|e): multinomial with automatically curated support
- *p*(*e*): joint distribution on all entities in the document

• p(e): MRF on CUIs

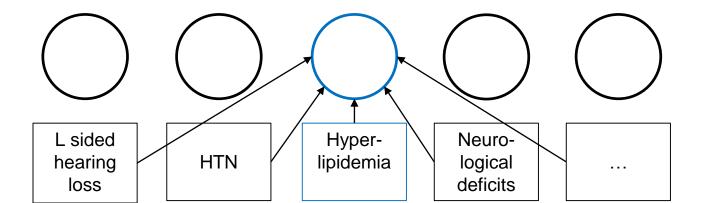


- Problem: CUIs are latent variables on MIMIC (unlabeled)
- Variational learning, following:
 - <u>Autoencoding Variational Bayes</u>, Kingma and Welling, ICLR 2014

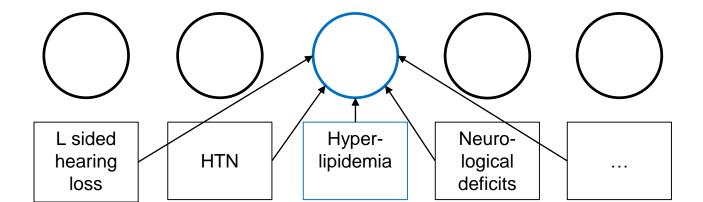
- Objective:
 - Maximize $\log(\sum_{e} p(m, e; \theta))$

- Jensen's inequality:
 - $\forall q, \log(\sum_e p(m, e; \theta)) \ge \sum_e q(e|m, \xi) \log(\frac{p(m|e, \theta)}{q(e|m, \xi)})$
- Joint maximization in ξ , θ

Factorized q: q(e|m) = ∏_iq(e_i|m)



Considers mention and neighbors:
q(e_i|m) = q(e_i|m_{i-2}, m_{i-1}, m_i, m_{i+1}, m_{i+2})



- Neural network parameterization
- Semi-automated restricted support
- Supervised training gives 2nd best accuracy on 2014 task

• Next steps:

- Pre-train parameters
- Use correlation model
- Train with variational algorithm

Review of Semi-Supervised methods

- Automatic labeling of data
- Label pre-selection
- Use prototypes
- Use features learned on larger corpus

Review of Semi-Supervised methods

• Domain adaptation: PubMed

• Multi-view learning

Review of Semi-Supervised methods

- Multi-view learning:
 - Other information on the patient: diagnosis codes, procedures, demographics, etc...
 - Jointly learn to predict those

Questions?